2030: Future Nuclear Technology and Applications

Facilitator: Elise Ottenfeld

Presenters: Lenka Kollar, NuScale Power, LLC. Kirk Sorensen, Flibe Energy Dr. Finis Southworth, NGNP Industry Alliance

NuScale SMR Overview

NAYGN Professional Development and NEA Conference Washington, DC June 3, 2019

> Lenka Kollar Director, Strategy & External Relations

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

Acknowledgement and Disclaimer

This material is based upon work supported by the Department of Energy under Award Number DE-NE0000633.

This presentation was prepared as an account of work sponsored by an agency of the United States (U.S.) Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Innovation and ingenuity for a new day of energy

4

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

A bold, new energy source

- **Smarter energy** flexible design can support multiple applications, integrate with renewables resources, provide highly reliable power to mission critical facilities, and serve as clean baseload power.
- Cleaner Energy 100% carbon-free energy as clean as wind or solar – with a small land footprint.
- Safer Energy should it become necessary, NuScale's SMR shuts itself down and self-cools for an indefinite period of time, with no operator action required, no additional water, and no AC or DC power needed.
- Cost Competitive the NuScale SMR is far less complex than other designs. Off-site fabrication and assembly reduce cost. Components are delivered to the site in ready-to-install form. All of this results in construction occurring in a shorter, more predicable period of time.

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

Who is NuScale Power?

- NuScale Power was formed in 2007 for the sole purpose of completing the design and commercializing a small modular reactor (SMR) – the NuScale Power Module[™].
- Initial concept had been in development and testing since the 2000 U.S. Department of Energy (DOE) MASLWR program.
- Fluor, global engineering and construction company, became lead investor in 2011.
- In 2013, NuScale won a \$226M competitive U.S. DOE Funding Opportunity for matching funds.
- >400 patents granted or pending in nearly 20 countries.
- >350 employees in 6 offices in the U.S. and 1 office in the U.K.
- Making substantial progress with a rigorous design review by the U.S. Nuclear Regulatory Commission (NRC).
 - Phase 4 of NRC Review is on schedule for completion December 2019.
- Total investment in NuScale to date ~US\$800M.
- On track for first plant operation in 2026 in the U.S.

NuScale Engineering Offices Corvallis

One-third scale NIST-1 Test Facility

NuScale Control Room Simulator

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

Core Technology: NuScale Power Module

- A NuScale Power Module[™] (NPM) includes the reactor vessel, steam generators, pressurizer, and containment in an integral package – simple design that eliminates reactor coolant pumps, large bore piping and other systems and components found in large conventional reactors.
- Each module produces up to 60 MWe
 - small enough to be factory built for easy transport and installation
 - dedicated power conversion system for flexible, independent operation
 - incrementally added to match load growth
 - up to **12 modules for 720 MWe** gross (684 MWe net) total output

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

Simplicity Enhances Safety

Natural Convection for Cooling

 Passively safe - cooling water circulates through the nuclear core by natural convection eliminating the need for pumps

Seismically Robust

 System submerged in a belowgrade pool of water in an earthquake and aircraft impact resistant building

Simple and Small

- Reactor core is 1/20th the size of large reactor cores
- Integrated reactor design no largebreak loss-of-coolant accidents

Defense-in-Depth

 Multiple additional barriers to protect against the release of radiation to the environment

Conduction – the water heated by the nuclear reaction (primary water) transfers its heat through the walls of the tubes in the steam generator, heating the water inside the tubes (secondary water) and turning it to steam. This heat transfer cools the primary water.

Convection – energy from the nuclear reaction heats the primary water causing it to rise by convection and buoyancy through the riser, much like a chimney effect

Gravity | Buoyancy – colder (denser) primary water "falls" to bottom of reactor pressure vessel, and the natural circulation cycle continues

Second-to-none safety case – site boundary Emergency Planning Zone capable

8

NuScale Plant Site Overview

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

A New Approach to Construction and Operation

Factory Fabrication

Low carbon, secure electricity

Housed in a 12 module reactor building

Shipped by truck, rail or barge

To the plant site

Ę

Beyond Baseload: NuScale Diverse Energy Platform

Oil Refineries Study - Reduction of Carbon Emissions (Fluor and NuScale)

HYDROGEN PRODUCTION

Hydrogen Production Study - High Temperature Steam Electrolysis (INL and NuScale)

DESALINATION

Desalination Study - Sized for the Carlsbad Site (Aquatech and NuScale)

MISSION CRITICAL FACILITIES

Reliable Power for Mission Critical Facilities (NuScale)

WIND

Integration with wind study - Horse Butte Site (UAMPS, ENW and NuScale)

Reports for associated technical studies are available at: www.nuscalepower.com/technology/technical-publications

NUSCALE PLANT

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

Load-Following with Wind

NuScale design meets or exceeds EPRI Utility Requirements Document (URD), Rev. 13, load following and other ancillary service requirements.

NuScale Co-Generation Studies

Oil Refinery Study Reducing Carbon Emissions (Fluor and NuScale)

10-Module Plant coupled to a 250,000 barrels/d refinery, thus avoiding ~230 MT/hr CO₂ emissions

Desalination Study for Clean Water and Electricity (Aquatech and NuScale)

8-Module Plant producing 60 Mgal per day of clean water plus ~400 MWe to the grid

High-Temp Steam Electrolysis for Carbonfree Hydrogen Production (INL and NuScale)

6-Module Plant producing ~240 tons per day carbon-free hydrogen for ammonia plant

A New Level of Plant Resiliency

Island Mode/Loss of Offsite Power A single module can power the entire plant in case of loss of the grid; no operator or computer actions, AC/DC power or additional water required to keep the reactors safe

First Responder Power

On loss of the offsite grid, through variable (0% to 100%) steam bypass, all 12 modules can remain at power and be available to provide electricity to the grid as soon as the grid is restored

Resilience to Natural Events

Reactor modules and fuel pool located below grade in a Seismic Category 1 Building

- Capable of withstanding a Fukushima type seismic event
- Capable of withstanding hurricanes, tornados, and floods

Electromagnetic Pulse (EMP/GMD)

Resilience to solar-induced geomagnetic disturbances (GMDs) and electromagnetic pulse (EMP) events beyond current nuclear fleet.

Resilience to Aircraft Impact

Reactor building is able to withstand aircraft impact as specified by the NRC aircraft impact rule

Cybersecurity

Module and plant protection systems are non-microprocessor based using field programmable gate arrays that do not use software and are therefore not vulnerable to internet cyber-attacks

NuScale Micro-Reactor Concepts

10-50 MWe Micro-NuScale Power Module™

- Builds on NuScale's existing technology; intended for:
 - Supplying power to communities with small grids,
 - Remote and off-grid communities
 - Off-grid industrial facilities
 - Long duration remote mining
 - Stationary / permanent military installations
- Design imperatives include:
 - Reduced construction time
 - Simplified operations
 - Increased fuel cycle length

1-10 MWe Heat Pipe Reactor

- Simple and inherently safe compact heat pipe cooled reactor concept that require little site infrastructure, can be rapidly deployed, and are fully automated during power operation
- Applications include:
 - Remote small off-grid communities with seasonal fuel transportation delivery limitations
 - Remote mining operations with a short lifespan
 - Temporary power for disaster relief
 - Power in space

Current Progress in Commercialization: Licensing, Supply Chain, and Customers

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

Blazing the Trail to Commercialization

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

First SMR to Undergo Licensing in the U.S.

- Design Certification Application (DCA) completed in ٠ December 2016
- Docketed and review commenced by U.S. Nuclear • Regulatory Commission (NRC) in March 2017
- Phase 4 of the NRC review on schedule for completion • December 2019. Technical review would be completed.
- NRC has published its review and approval schedule; to be approved in September 2020

CERTIFICATI

- 12,000+ pages
- **14 Topical Reports**
- >2 million labor hours
- >800 people
- >50 supplier/partners
- Over \$500M

Factory Fabrication

- NuScale Power Modules[™] (NPMs) are produced in a factory and then shipped onsite to be installed in the reactor building.
- In 2018, BWX Technologies, Inc. (BWXT) was selected to provide manufacturing input leading to fabricating the first NuScale Power Modules[™].
 - The decision follows a rigorous 18-month selection process, with expressed interest from 83 companies based in 10 countries.
 - BWXT and NuScale are collaborating to update the design optimizing for manufacturing and transportation and reducing overall costs of the NPMs.
- In 2019, Doosan Heavy Industries and Construction Co., Ltd. (DHIC) and NuScale signed an MOU for strategic cooperation to support deployment of the NPM worldwide. DHIC will bring its expertise in nuclear pressure vessel manufacturing and will join the larger U.S.-led manufacturing team.
- Manufacturing trials are planned for 2020.

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

First Deployment: UAMPS Carbon Free Power Project

- Utah Associated Municipal Power Systems (UAMPS) provides energy services to communityowned power systems throughout the Intermountain West.
- First deployment will be a **12-module plant (720 MWe)** within the Idaho National Laboratory (INL) site, slated for commercial operation in 2026.
- DOE awarded \$16.5 million in matching funds to perform site selection, secure site and water, and prepare combined operating license application to NRC.
- Joint Use Modular Plant (JUMP) Program: INL-DOE will lease one of the modules in the 12-module plant, for research purposes, an additional module may be used in a Power Purchase Agreement (PPA) to provide power to INL.

20

International Opportunities

- NuScale informed the Canadian Nuclear Safety Commission (CNSC) of its intention to submit an application under the prelicensing vendor design review process and signed MOUs with Ontario Power Generation (OPG) and Bruce Power
- NuScale has been actively involved in the United Kingdom's SMR market and continues to support UK government SMR program initiatives
- NuScale and Nuclearelectrica SA signed MOU to explore SMRs for **Romania**
- NuScale signed MOU with Jordan Atomic Energy Commission (JAEC) to evaluate NuScale's SMR for use in Jordan
- Many international opportunities for NuScale SMR deployment in Eastern Europe, the Middle East, Southeast Asia, and Sub-Saharan Africa

NuScale Nonproprietary Copyright © 2019 NuScale Power, LLC.

The Future of Energy is Here

NuScale Control Room Simulator

ne-third scale NIST-1 Test Facility

SHARE ST

NUSCALE Power for all humankind

Role of Advanced Reactors

Dr. Finis Southworth Chief Technology Officer NGNP Industry Alliance

NAYGN Conference—Washington DC June 3, 2019

Learning Objectives, Outline/Major Themes

- Summary of advanced reactors being considered
- Attributes—
- Roles—
 - Improved safety case
 - Resilience
 - Hybrid energy
 - Dual markets
 - Need for GHG free technologies across many energy sector...
 - Economics (unproven for all concepts)

Clean Sustainable Energy for the 21st Century

The Evolution of Nuclear Power

Conceptual Mapping of Generation IV Nuclear Reactor Concepts

(Adapted from Corradini, M. L. *Rohsenow Symposium on Future Trends in Heat Transfer*, Massachusetts Institute of Technology, MA. 16 May 2003.)

Clean Sustainable Energy for the 21st Century

High Temperature Sodium Fast Reactors Fluoride High Gas-Cooled Reactors **Temperature Reactors** n-Vessel Transfer Machine (IVTM) **Rotatable Plug** Intermediate Heat Exchanger (IHX) (2x) Electromagnetic (EM) Pump (4x) ntrol Rod Drives Vessel Liner Used Fuel Storage Reactor Vessel Lead-Cooled Fast Reactors Gas-Cooled Fast Reactors Molten Salt Reactors Reprocessing Gas extraction Gas injection

Advanced Reactors (Generation-IV)

Clean Sustainable Energy for the 21st Century

Once Through Fuel Cycle

Depleted Uranium Undefined Future

Mine Tailings ←Two Major Wastes→ In Terms of Radioactivity Spent Nuclear Fuel

Micro-reactors and Small Modular Reactors

- Faster more predictable construction
- Factory fabrication
- Strong safety case (completely passive DHR)
- Lower financial risk with staged deployment
- Siting flexibility
- Almost all advanced reactor concepts are micro- or small.
- There are 52 active development companies pursuing an advanced reactor design.

- Micro—1-25 Mwe
- Small—300 MWe

Idaho National Laboratory

Micro-Reactors

- 2-20 MW, transportable, inherently safe
- LANL/Oklo heat pipe reactor among others that look interesting
- Working through a successful demonstration at INL can resolve a number uncertainties in the AR deployment process at a reduced cost
- Successful deployment in niche markets (space, defense, remote off-grid) can open up broader commercial markets

Gen4Energy, 25MWe 'battery'

Exceptional Safety Case

- TRISO fueled reactors concepts generally require no off-site AC, no on-site AC, or on-site DC for DHR.
- Most aim to meet ASME safety case (no social disruption)

- Micro—1-25 Mwe
- Small—300 MWe

Idaho National Laboratory

Fuel Qualification (5 < TRL < 6)

Once a candidate fuel system is identified, a qualification program can be executed

- Lab, pilot, and production scale fabrication
- Testing at prototypical service conditions (irradiation, temperature, chemistry)
- Source term characterization
- Fuel performance modeling (MOOSE-BISON-MARMOT)
- HTR (TRISO) and SFR (U-Zr) fuel
- The INL has led a high temperature reactor (TRISO) fuel qualification effort that will be completed ~2024
 - Highest priority task in the gas-cooled reactor campaign, supported by all members of the HTR Technical Working Group

Kairos Power

Clean Sustainable Energy for the 21st Century

Hybrid Energy

- Most high temperature reactors can load-follow well, allowing a meshing with intermittent renewables
- HTRs can satisfy multiple markets—electricity to the grid, and process heat to industry.

- Micro—1-25 Mwe
- Small—300 MWe

Clean Sustainable Energy for the 21st Century

HTGRs Can Serve Wide Variety of Applications

Cost and Economics

- One-time costs include R&D, design, and initial licensing. At best, about \$1 B. Can be much more if significant R&D needed
- Site specific design and construction about \$5,000/kwe or \$2,000/kwth overnight cost.
- Owners costs may add significantly more
- Delays in schedule linearly drive up cost (ten years instead of five years to build will be \$10,000/Kwe).

Clean Sustainable Energy for the 21st Century

Construction cost

Clean Sustainable Energy for the 21st Century

Financing Risk

What you should take away from this lecture

- There are many advanced reactor concepts being examined and receiving investment today
- Meeting multiple markets is a significant driver
- Load following flexibility
- Economics is a driver but as yet unproven.
- Advanced reactors may be a solution to climate change

Clean Sustainable Energy for the 21st Century

Backup

Clean Sustainable Energy for the 21st Century

Core Meltdowns/Safety Fundamentals

Fast Reactors

Charm of Fast Reactors

- Breeding
- New Waste Management

- Coolants
 - Sodium
 - Sodium-Potassium
 - Lead
 - Gas (Helium, Steam)
 - Salt
 - Lithium

HYBRID POWER TECHNOLOGIES LLC

Advanced Nuclear Directory_3-13-19 PDF

EVELOPER

T

R

6

0 1

Clean Sustainable Fnerov for the 21st Century

FRAMATOME, INC.

framatome

Framatome is a major international player in the nuclear energy market recognized for its innovative solutions and value-added technologies for designing, building, maintaining, and advancing the global nuclear fleet. The company designs, manufactures, and installs components, fuel and instrumentation and control systems for nuclear power plants and offers a full range of reactor services.

Framatome is developing the Steam Cycle HTGR Generation IV advanced reactor concept. Its scalable design provides options for a variety of customer needs for high-temperature steam and electricity. Its unparalleled safety profile allows co-location with customer facilities. True walk-away safety and restart capability following a design-basis accident make the SC-HTGR a low investment risk for plant owners and operators.

www.framatome.com

Location: Lynchburg, VA Founded: 1989 Principal/CEO: Gary Mignogna Major Investors: N/A Technology Class: High temperature gas cooled Reactor Type: Steam cycle high temperature gas cooled reactor Power Output (MWe/MWT): 22-272 MWe / 50-625 MWt Federal Engagement: DOE, GAIN, ARPA-E, NRC Preferred Point of Contact: Darryl Gordon / Darryl.gordon@framatome.com / 434-832-5199

3

14

ul LTE 🛛 100% 💷

...

QŮ

KAIROS POWER LLC

Our mission: enable the world's transition to clean energy, with the ultimate goal of dramatically improving people's quality of life while protecting the environment. Kairos Power will commercialize the fluoride salt-cooled high-temperature reactor (FHR), which can be deployed with robust safety, cost competitiveness through high efficiency and low-pressure small modular design, and flexible operation to accommodate the expansion of variable renewables.

Location: San Francisco, CA www.kairospower.com Founded: 2016 Principal/CEO: Michael Laufer Major Investors: N/A Technology Class: Solid-fueled/Molten salt cooled Reactor Type: Graphite-moderated, fluoride salt-cooled, high temperature reactor Power Output (MWe/MWT): N/A Federal Engagement: GAIN Preferred Point of Contact: Jaclyn Rodriguez / rodriguez@kairospower.com

20

Clean Sustainable Energy for the 21st Century

NuScale is developing SMR that integrate the reactor, steam generator, pressurizer, and containment into a single module. Nuclear power plants using NuScale technology can be designed to accommodate growing electrical demand by simply adding additional modules as the need arises.

www.nuscalepower.com

Founded: 2007 Principal/CEO: John Hopkins Major Investors: Fluor Corporation Technology Class: Water cooled Reactor Type: Integral pressurized water reactor Power Output (MWe/MWT): 50 MWe Federal Engagement: DOE, NRC Preferred Point of Contact: Lenka Kollar / Ikollar@nuscalepower.com

Location: Tigard, OR

25

ADVANCED NUCLE

TERRESTRIAL ENERGY USA

LOPER

ш

-

Ę

Terrestrial Energy USA (TEUSA) is developing an advanced Small Modular Reactor (aSMR) using Integral Molten Salt Reactor (IMSR®) technology, for first commercial deployment in the 2020's, and to provide cost-competitive electricity and process heat to industry. The IMSR® design is a graphite moderated, LEU once-through fueled, fluoride molten salt reactor (MSR) that uses a replaceable reactor core architecture.

Location: New York, NY www.terrestrialusa.com Founded: 2014 Principal/CEO: Simon Irish Major Investors: Private investors Technology Class: Advanced small modular reactor Reactor Type: Molten salt reactor Power Output (MWe/MWT): 192 MWe / 400 MWt Federal Engagement: DOE, GAIN, ARPA-E, NRC Preferred Point of Contact: Robin Rickman / rrickman@terrestrialusa.com / 724-421-6434

PM Thu Jan 3

Clean Sustainable Energy for the 21st Century

A

= rurbes

limit global warming to only a few degrees, we need to reduce emissions as fast as possible and reach near-zero human-made by 2050.

Emissions pathways to limiting global warming to just 2º Celsius (3.6º Fahrenheit) above the temperatures of the 1800s.

The situation is urgent. In order to limit global warming to only a few degrees, we need to reduce human emissions as fast as possible and reach near-zero by 2050. But the longer we wait to begin decreasing, the faster we have to decrease every year. RICHARD SOMERVILLE

Clean Sustainable Energy for the 21st Century

What Can Turn This Situation Around?

Clean Sustainable Energy for the 21st Century

ILTE √ 82%

....

12:32 PM Thu Jan 3

×

Nuclear the 'ideal way' for dealing with climate change, says Bill Gates - World Nuclear News www.world-nuclear-news.org

Nuclear the 'ideal way' for dealing with climate change, says Bill Gates

02 January 2019

Bill Gates has written in his year-end blog that nuclear power is "ideal for dealing with climate change". The technologist, business leader, and philanthropist wrote about nuclear power in a section about energy in his 29 December article *What I learned at work this year*.

Bill Gates (Image: GatesNotes)

The Microsoft Corp co-founder chairs TerraPower LLC, a nuclear energy venture, which *Reuters* reported yesterday is seeking a new partner for early-stage trials of its technology after new US rules forced it to abandon an agreement with China. *Reuters* cited comments made by company officials to the *Wall Street Journal*. TerraPower reached an agreement

NEI Nuclear Energy Institute's post

Most read

Nuclear vital to decarbonisation, finds MIT study

UN report shows increased need for nuclear

Climate goal demands huge boost in Chinese nuclear

Union of Concerned Scientists calls for policy to preserve nuclear

Climate change demands world 'revisits' nuclear, says UNECE director

Europe aims to be carbon neutral by 2050

Canadian and UK scientists forge closer ties

Nuclear important to sustainable energy mix, says UNECE report

Nuclear the 'ideal way' for dealing with climate change, says Bill Gates

world nuclear fuel cycle 9-11 April 2019, Miami, Florida

台34 日3 へ

4

Clean Sustainable Energy for the 21st Century

Recent Articles

Forbes Magazine: Had They Bet On Nuclear, Not Renewables, Germany & California Would Already Have 100% Clean Power

I write about energy and the environment: **Michael Shellenberger** Contributor

Had California and Germany invested \$680 billion into new nuclear power plants instead of renewables like solar and wind farms, the two would already be generating 100% or more of their electricity from clean (low-emissions) energy sources, according to a new analysis by Environmental Progress.

Schellenberger (cont'd.)

- Had Germany spent \$580 billion on nuclear instead of renewables, it would have had enough energy to both replace all fossil fuels and biomass in its electricity sector and replace all of the petroleum it uses for cars and light trucks.
- Had California spent an estimated \$100 billion on nuclear instead of on wind and solar, it would have had enough energy to replace *all* fossil fuels in its in-state electricity mix.

GHG Intensity of French and German Power

Carbon intensity in the last 24 hours

🛨 Get historical data, marginal and forecast API 🔒 pro

Origin of electricity in the last 24 hours

🛨 Get historical data, marginal and forecast API 🔒 pro

Carbon intensity (gCO2eq/kWh)

400

0

Tomorrow

800

Energy for the 21st Century

Clean Sustainable Energy for the 21st Century

California Nuclear Abandonments

0

Installed Capacity

(MW)

Annual Generation

(TWh)

0

What are we doing in the US?

- 20 % Electricity is from Nuclear
- We have the most operating nuclear plants with 99 (France has 55)
- We shut down five plants in the past five years
- We have been building many windmills, especially out West, Texas, and selectively in New England

Clean Sustainable Energy for the 21st Century

What will reduce GHGs....

- Nuclear plus renewables
- Nuclear
 - Make these options cost-effective by putting a price on GHGs
 - Make this fee acceptable by returning it to the public
- Use electricity and hydrogen as energy 'carriers'
 - Electrify or use hydrogen for light duty vehicles, heavy duty vehicles, and rail transport
 - Electrify mass transit
 - New steel making technology, new cement processes
 - Better refrigerant fluids
- Hydro and geothermal will work on their own if your nation is geologically lucky (Iceland, Scandinavia)

Clean Sustainable Energy for the 21st Century

Questions?

Dr. Finis Southworth Chief Technology Officer <u>finis@ngnpalliance.org</u>

f

www.ngnpalliance.org

framatome

SERVICES CORPORATION

Clean Sustainable Energy for the 21st Century

The Four PRIME Parties

NGNP Industry Alliance

U.S. Industry group created to move forward HTGRs and nuclear process heat Considerable HTGR experience Japan Atomic Energy Agency Substantial historic and current HTGR and H2 experience including the HTTR Test Reactor. Strong emphasis on nuclear H2

Korean Atomic Energy Research Institute

Substantial historic and current HTGR and H2 experience. Strong emphasis on nuclear H2 Poland and EU's Nuclear Cogeneration Industrial Initiative Strong interest in nuclear industrial process heat. Considerable HTGR historic experience

As an Advanced Gen IV Reactor the HTGR Is:

- Robust tolerates loss of pressure, flow, coolant & backup cooling without significant release from fuel
- Real 6 reactors have been licensed and operated, two in ~800 MWt class & three on the grid, two new PBs under construction
- Ready- technology development largely complete; proven fuel; designs are largely complete; US NRC has been engaged thru White Papers
- **Revolutionary** Applications addresses high temperature process heat applications which currently require fossil fuel & produce 20% of world CO2 emissions; uniquely offers potential for clean, high efficiency hydrogen production