There's Much More to Nuclear than Electricity

By **Zabrina Johal** Director of Business Development

Presented to North American Young Generation in Nuclear

Washington, DC

June 3, 2019

Out of Montana . . .

... to California and Beyond

Admiral Hyman G. Rickover

ADM Hyman G. Rickover "Father of the Nuclear Navy"

USS Nautilus (SSN-571)

Shippingport Atomic Power Station

How I Got Here

LT Zabrina Johal, aboard USS Carl Vinson (CVN-70), in the Persian Gulf

Navy Nuclear Plants Power a Floating City

How Navy Nuclear Plants Work

General Atomics

TORREY PINES GENERAL ATOMICS

LOCATION: San Diego FOUNDED: 1955 by General Dynamics STATUS: Privately held corporation

BUSINESS: High-technology research, design, manufacturing and production for industry and government worldwide

"Atoms for Peace"

Eisenhower delivering his "Atoms for Peace" speech to the UN General Assembly in December 1953

1955 UN Conference on the Peaceful Uses of Atomic Energy in Geneva

Out of an Old Schoolhouse

www.epri.com

The schoolhouse that served as GA's first home

"....WE ARE ESTABLISHING HERE A TIMELESS INSTITUTION, A THING OF THE MIND AND SPIRIT, DEVOTED TO MAN'S PROGRESS."

> JOHN JAY HOPKINS JULY 11, 1956

THE JOHN JAY HOPKINS LABORATORY FOR PURE AND APPLIED SCIENCE

DEDICATED THE TWENTY-FIFTH OF JUNE NINETEEN HUNDRED AND FIFTY NINE.

John Jay Hopkins, San Diego Mayor Charles Dail, and Fred de Hoffman dedicating the facility in July 1956

"What the world needs is a safe reactor."

One of the first TRIGAs on display at the second UN Conference in 1958

www.epri.com

– Edward Teller, San Diego, 1956

- Developed at General Atomics in San Diego
- First reactor started up in 1958

 three years after GA was founded
- 66 TRIGAs built in 23 countries
- Inherently safe UZrH_x fuel

Training Research Isotopes General Atomics

GENERAL ATOMICS

Providing Solutions at the Nexus of National Security + Nuclear Interests

Magnetic Fusion Energy

GA hosts the DIII-D National Fusion Facility and is a major contributor to the success of ITER

DIII-D: Nation's premier fusion energy facility

ITER: Rapid progression to burning plasma

Providing the Heart of ITER

GA ITER Central Solenoid Facility

GA is building ITER's Central Solenoid – the world's most powerful pulsed electromagnet

Magnet winding process

www.epri.com

ITER

Precision Fabrication Enables HED Experiments

Crystalline SiC fiber

Fiber braided to precise tolerances

Fiber infiltrated with SiC matrix

SiGA[™] composite

- Silicon-carbide fiber reinforces silicon-carbide composite to create innovative matrix material (SiGA[™])
 - SiC fibers reinforce the composite like rebar in concrete
 - Exceptional strength retention to 1800°C (3x higher than Zircaloy)
 - Extremely stable in harsh environments

Addressing Nuclear Safety Needs Post-Fukushima

SiGA[™] composite is a revolutionary ATF cladding material

- Highest safety, performance and economic reward
- Steady DOE support required to meet schedule
- Strong industry demand for deployment

Development from 2011 to 2030

19

- Modular design
 265 MWe increments
 as needed
- Site flexibility no need for water source
- Provides grid stability
 supports solar and wind
 renewable energy
- Passively safe no need for emergency power or operator actions
- Cost competitive >50% efficient

Prospects for A Nuclear/Hydrogen Future

Tina Taylor Deputy Chief Nuclear Officer and Senior Director R&D

Back to the Future?

Next Generation Nuclear Plant, Image: Idaho National Laboratory

SuperGrid – The Next Steps, EPRI Report 1011746, March 2005

Flexibility

Managing Flexibility

Role for energy storage and alternate products

Deep Decarbonization

US Energy Use & Decarbonization

Estimated U.S. Energy Use in 2012: ~95.1 Quads

is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

Advanced Nuclear Technologies

Advanced Nuclear

- Inherent safety
- Robust, competitive, sustainable economics
- Scalable, dispatchable, zero carbon energy
- Diversified products and market access
- Flexible operation
- Secure fuel supply

Advanced nuclear energy systems offer unique options for dispatchable, energy dense and non-emitting generation.

Hydrogen: Advanced Reactors' role

Nuclear Energy Reimagined: Maximizing energy utilization through novel systems integration and process design.

© 2019 Electric Power Research Institute. Inc. All rights reserved.

Hydrogen Technologies

34

Additional Key Technologies in A Very Low-Carbon 2050

Advances in Hydrogen

Electrolyzer cell stacks

Proton Exchange Membrane Electrolyzer

www.epri.com

- Hydrogen as the dominant energy carrier for transportation
 - displacing petroleum
 - leap frogging battery technology

http://www.toyota-global.com/innovation/environmental_technology/fuelcell_vehicle/

"Toyota sees great potential in hydrogen and fuel cell vehicles."

What's possible with Hydrogen?

Together...Shaping the Future of Electricity

NAYGN Presentation

SHINE Medical Technologies | June 2019

Health. Illuminated.

Mission

Dedicated to being the world leader in the safe, clean, affordable production of medical tracers and cancer treatment elements.

Health. Illuminated.

Medical Isotopes

Medical isotopes allow doctors to diagnose and treat a wide range of diseases

- Molybdenum-99 (Mo-99), the most widely-used medical isotope, decays into technetium-99m, which is used in more than 40 million doses annually
- "Workhorse" of nuclear medicine

www.epri.com

 SHINE's process will also generate the valuable isotopes iodine-131 and xenon-133

Mo-99 decays at ~1% per hour, making proximity to patients critical

Technology Demonstrations

Phoenix Nuclear demonstrates production level beam current and voltage (Mar. 2012)

132 hour >97% uptime demonstration (Mar. 2016) PHOENIX NUCLEAR LABS, LLC Argonne National Laboratories demonstrates SHINE Process meets commercial purity requirements (June 2015)

Data gathered at various laboratoriesprove feasibility of liquid target at scale (pre-2004)

SHINE and Los Alamos National Laboratory complete preliminary design and safety case for innovative, recoverable liquid target (Jun. 2013)

GE Healthcare tests product from SHINE process proving compatibility with GE Drytec distribution system (Nov. 2015)

GE further proves compatibility of SHINE Mo-99 by synthesizing Myoview and Ceretec injectables (Nov. 2015)

Every Part of the SHINE Process Has Been Demonstrated

Step	Demonstrated?
Accelerator	\checkmark
Target Solution Irradiation	\checkmark
Processing	\checkmark
Generator loading	\checkmark
Generator elution	\checkmark
Kits	\checkmark

Three signed customer contracts

Nuclear Regulatory Commission construction approval

- Issued Feb 2016
- Culmination of 4 years of work
- First approval of its kind since 1961

SHINE Construction Permit Signing Ceremony February 29, 2016

USNRC

Building One: 1st building on the SHINE campus

- Groundbreaking August 2017
- Construction complete Q1 2018
 - Completed 3 weeks ahead of schedule
 - Zero OSHA-recordable incidents
- 11,400 square feet
- Licensed by State of Wisconsin
- Future use for employee training and technology development

Constructio First Produc demo Q1 2 Future use technology

Building One: SHINE Technology Development Facility

Next Steps

- Current key activities
 - Preparing OL application
 - Preparing for start of construction
 - Building One first production unit demo
 - Negotiating additional supply agreements
 - 80+ employees; 20 FT positions posted currently
- First production 2021

Production Facility Design

- To be built in Janesville, Wisconsin
- Mo-99 capacity >4,000 6-day Ci/wk
- Xe-133, I-131, Lu-177, Sr-89, others
- 8 independent irradiation units accelerators
 - High reliability
 - Flexible production schedule
- Close to regional airports
 - designed for logistical efficiency

SHINE Process Overview

- 1. Periodic solution preparation
- 2. Solution chemistry check
- 3. Staging to fill target solution vessel
- 4. Irradiation

52

- 5. Extraction and purification
- 6. Periodic solution cleanup and disposal

Technological Approach

- Small systems: Hundreds of times less power than isotope production reactors being used
- Low stored energy: low temperature and near atmospheric pressure
- Low enriched uranium (LEU) reusable target
- Driven by low-energy electrostatic accelerator
- Multiple units and trains provide operational scalability and flexibility

53

Neutron Generator

- Microwave ion source creates dense deuterium plasma
- Simple DC accelerator extracts deuterium ion beam (~300 keV, ~60 mA)
- Magnetic field focuses ion beam
- Differential pumping system keeps gas out of accelerator
- Beam strikes tritium gas target and generates neutrons
- 5 x 10¹³ neutrons/second total neutron output

54

Subcritical Assembly Overview

Subcritical assembly multiplies neutron yield, dramatically increasing isotope production

- Hybrid fusion-fission device
- How it functions
 - Neutrons from accelerator created in center of assembly (neutron spark plug)
 - Neutrons pass through neutron multiplier
 - Multiplied neutrons pass into uranium solution in TSV, where they cause fission
 - Extra neutrons further multiply and create more medical isotopes
 - Transfer solution to the processing facility for isotope removal

Subcritical Assembly

- Subcritical aqueous target allows high multiplication while keeping safely away from critical
- Small, bounded power changes in response to void and temperature
- No active reactivity control (i.e., control rods)
- Solution dumped if power limits exceeded
- Uranium target can be re-used
- Minimal decay heat after shutdown

Neutronics Design - Startup

- Startup just like a reactor, except the endpoint is different
- Operators plot 1/M curve with solution volume
- Add solution, allow flux to stabilize, record flux (1/M)
- Operators stop fill when 5% by volume below predicted criticality
- Nuclear systems become excellent predictors of critical states when near critical conditions
- Inherently slow reactivity additions
- Cold startup is most reactive state
- Driven further from critical during operation

Off-Gas System Design

- Provides continuous sweep gas through system
- Recombines hydrogen and oxygen from radiolysis
- Quickly returns the water to the system
- Regulates pressure within the system
- Skid designed for maintainability

58

ISPECT 101 PROSPECT 101

SSE 257 177

Medical Technologies