Safety Brief
Webinar Overview

- Why do we need Small Modular Reactors (SMRs)?
 - Original Need vs. Current Need
 - Benefits
 - Market and Competitive Landscape

- Westinghouse SMR
 - Design and Technology
 - Layout
 - Modularity

- Westinghouse SMR Program
 - Program Overview
 - Current Activities

- Questions and Answers
Original Need for Small Reactors

- **USS Nautilus**
 - U.S. Navy submarine
 - Launched in 1954
 - Designed by Westinghouse Electric Company

- ~140 ships are powered by small reactors, and more than 12,000 reactor years of marine operation has been accumulated

- Most original small reactors are submarines, but they range from icebreakers to aircraft carriers

- With small, underwater nuclear reactors, submarines did not need to resurface for fuel
Current Need for Nuclear Energy, including SMRs

Small Greenhouse Gas Footprint Scalable Electricity

Source: www.world-nuclear.org
Economic Benefits of SMRs

Ease of Licensing
• Shift from active to passive safety systems
• Smaller source term
• Integral on-site used fuel management

Ease of Financing
• Smaller capital cost
• Shorter development time to first revenue
• Lower project costs

Ease of Deployment
• Simplified on-site assembly
• Shorter deployment times
• Better matching to electricity demand

SMRs have the potential to be an attractive economic option... but it will take a joining of the industry beyond vendor companies to include regulators and customers in order to achieve a plant that can be standardized and factory-built.
Baseload Energy – U.S. Coal Example

West
Number of Units: 88
Average Nameplate Capacity: 187 MW
Average Age of Units: 40 years

Midwest
Number of Units: 583
Average Nameplate Capacity: 195 MW
Average Age of Units: 44 years

Northeast
Number of Units: 131
Average Nameplate Capacity: 216 MW
Average Age of Units: 43 years

Southwest
Number of Units: 95
Average Nameplate Capacity: 365 MW
Average Age of Units: 33 years

Southeast
Number of Units: 458
Average Nameplate Capacity: 267 MW
Average Age of Units: 44 years

SMR Global Market Perspective

- Cogeneration (Heat and Power)
- Credible Base Load Replacement
- Base Load Renewable Integration
- Low Cost and Price Certainty
Competitive Landscape

Commerically Deployable

LWR SMR

Exotics

Today

2020

2030
The Westinghouse Vision

Westinghouse will be the first to deploy a safe, economic SMR to meet the many needs of existing and new to nuclear customers

• Working within constraints
 – Land, grid, cooling water, financing, distributed service territory

• Offering clean energy
 – Offset owner costs for infrastructure development: land, cooling, T&D
 – Generation diversity
 – Operational flexibility

• Providing project certainty
 – Reduced licensing risk
 – Short-construction duration
 – Cost predictability and certainty

New applications for nuclear...

Aging Fossil Plants
District Heating
Remote Markets
Small Grid Markets
Desalination
Process Heat
What is the Westinghouse SMR?

- An integral pressurized water reactor—single >225 MWe reactor
- Innovative packaging of proven components
- The highest levels of safety with fewer accident scenarios
- Industry-proven system designs
- Compact reactor coolant system and containment
- An engineered solution for today’s clean energy challenges

The most power, with the least amount of material
Westinghouse Plant Design

- Single reactor site (standalone)
- Fuel – Modification of standard Westinghouse product (17x17 RFA)
- Forced flow with 8 reactor coolant pumps
- Internal control rod drive mechanisms
- Compact/high pressure containment vessel below grade
- Recirculating straight tube steam generator with steam drum location outside containment vessel
- Nuclear Island is 110’x110’
- Embedment is 105’ deep
- 24-month cycle length
- Load follow capability
- Total site area: ~15 acres
- Instrumentation and Control: Ovation®-based Digital Control System

~90 ft.
32 ft.
SMR Plant Layout

Annex Building:
- Security
- Offices
- Restrooms
- RCA entry

Turbine Building:
- Turbine system
- Auxiliary systems
- Drain systems

Radwaste Building:
- Hot machine shop
- Low level radwaste storage
- Truck bay

Nuclear Island:
- Containment and reactor
- Safety-related systems
- Defense-in-depth systems
- Radwaste systems
- Control room
- HVAC
How Small is Small?

25 Westinghouse SMR containment vessels fit in a single AP1000 plant containment vessel

Westinghouse SMR NSSS island fits in the AP1000 plant shield building
SMR Safety Overview

• **7 Days of Passive Heat Removal with Onsite Inventory**
 – Capability to add additional inventory to UHS tanks for indefinite cooling

• **100% reliance on natural forces**
 – Evaporation, condensation, gravity
Reactors Coolant Pumps Overview

- Seal-less pump design
- Driven with variable frequency drives (VFD)
- Mounted horizontally to reactor vessel below closure flange
- Internally circulating reactor coolant removes pump heat via heat exchanger to plant component cooling water system
Coolant Flow Path
Internal CRDM Design

- Latch assemblies, controls, and interfaces with fuel are all based on existing, proven designs
- Three-coil magnetic jack based AP1000 plant design with modifications
 - High-temperature coil winding design
 - Sealed, stainless steel coil stack housing
 - Sealed power conduit with leak detection
- Testing program under way
Modular Design Goal:
Increase Factory Fabrication and Reduce Schedule

- Target for SMR is to have 90% modularity (AP1000 plant is approximately 30% modularized)
- Use industry best practices for modularity
 - Shipbuilding and airline industry benchmarks
 - Modularization 1:3:8 rule

Drive Reduced Construction Schedule
Modular Construction

- Traditional large scale reactor economies of scale can be countered through application of modular construction techniques
- SMR maximizes modular design in all aspects of plant
- Modular design drives work normally completed at the construction site to the factory where quality is increased and overall cost are reduced
- Modules are designed for road and rail transport to site and scalable to other forms of transport
Modular Construction

• SMR uses the AP1000 plant licensed modular wall and joint design
• All SMR structures, systems and components are considered for modular assembly
• On-site assembly of larger modules will reduce work in the hole
• Outfitted modules enable early testing before installation
• Modular construction reduces the onsite construction time and resources
• Modular construction is critical to the success of SMR
Westinghouse SMR Program Team

- Westinghouse is the only SMR vendor with a dedicated customer, Ameren Missouri
 - Callaway site in Missouri to be the site of the first Westinghouse SMR
- Ameren Missouri and Westinghouse formed the NexStart Alliance
 - NexStart Alliance design reviews have involved customers early in the design phase
- Westinghouse has teamed up with universities
 - Missouri System
 - Carnegie Mellon University, University of Pittsburgh
 - National Labs; ANL, Idaho National Lab, Oak Ridge
- Burns and McDonnell will have engineers working alongside Westinghouse engineers in Spring 2013
NexStart SMR Alliance

- Multiple seriously interested customers and suppliers
- NexStart SMR Alliance will ensure that a license moves forward
SMR Websites and Recent Articles

• **Official Westinghouse SMR Website**
• **Nuclear Energy Institute (NEI) Web Page on Small Reactors**
• **EnergyBiz Magazine - "Going Modular: The Promise and Untapped Markets"**
 (by Dr. Kate Jackson, Westinghouse Chief Technology Officer & SVP, Research & Technology)
• **NexStart Alliance Website**
• **Ameren Missouri Website**
• **Modern Power Systems - BRICS Edition Article - "Small, but perfectly formed“**
 (interview with Dr. Kate Jackson)

Feel free to email with any questions: tavridel@westinghouse.com
Questions?
AP1000 is a trademark or registered trademark of Westinghouse Electric Company LLC, its affiliates and/or its subsidiaries in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized use is strictly prohibited. Other names may be trademarks of their respective owners.

Ovation is a trademark or registered trademark of its respective owner. Other names may be trademarks of their respective owners.